Showing posts with label TICKS. Show all posts
Showing posts with label TICKS. Show all posts

Friday, May 23, 2014

NSF: TICKS AND LYME DISEASE

FROM:  NATIONAL SCIENCE FOUNDATION 
Lyme Disease: Ten things you always wanted to know about ticks...
...but maybe were afraid to ask...
May is Lyme Disease Awareness Month.

To find out how to steer clear of Lyme disease during "picnic season" - a time when people are more likely to pick up ticks - the National Science Foundation spoke with NSF-funded disease ecologist Rick Ostfeld of the Cary Institute of Ecosystem Studies in Millbrook, N.Y., and program director Sam Scheiner of NSF's Division of Environmental Biology.

Ostfeld's research is funded by the joint NSF-NIH Ecology and Evolution of Infectious Diseases Program and NSF's Long-Term Research in Environmental Biology Program.

1) What have we learned about how Lyme disease is transmitted?

Lyme disease can develop when someone is bitten by a blacklegged tick infected with a virulent strain of the bacterium Borrelia burgdorferi. At least 15 strains of the bacterium are found in ticks, but only a few turn up in Lyme disease patients, says Ostfeld.

Newly hatched larval ticks are born without the Lyme bacterium. They may acquire it, however, if they feast on a blood meal from an infected host. Scientists have learned that white-footed mice, eastern chipmunks and short-tailed shrews can transfer the Lyme bacterium to larval ticks.

Tick nymphs infected with Lyme bacteria pose the biggest threat to humans; their numbers are linked with the size of mouse populations.

2) The list of illnesses spread by blacklegged ticks seems to increase each year. What's going on?

People in the Northeast, Mid-Atlantic, and Midwest have experienced waves of "new" tick-borne diseases. It started in the 1980s with Lyme disease. Then in the 1990s it was anaplasmosis, followed in the early 2000s by babesiosis. Now we may be seeing the emergence of Borrelia miyamotoi, says Ostfeld.

The pathogens are transmitted by blacklegged ticks. "We suspect that they were present for decades in isolated geographic areas, but we're working to understand what's triggering their spread," says Ostfeld. For example, while Lyme disease bacteria can be carried long distances by birds, Anaplasma and Babesia don't fare well in birds.

3) How do small mammals play a part?

Mice, chipmunks and shrews play a major role in infecting blacklegged ticks with the pathogens that cause Lyme disease, anaplasmosis, and babesiosis. Ticks feeding on these animals can acquire two or even all three pathogens from a single bloodmeal, says Ostfeld.

Health care providers need to be aware, he says, "that patients with Lyme disease may be co-infected with anaplasmosis and babesiosis, which will affect symptoms, treatments, and possibly outcomes. The good news is that by regulating these small mammals, we can reduce our risk of exposure to all three illnesses."

4) How are predators like foxes protecting us against diseases such as Lyme?

Some predators appear to be protecting our health by regulating small mammals, Ostfeld says. Research suggests that where red foxes are abundant, there is a lower incidence of Lyme disease in the human population.

"We're investigating whether foxes and other predators reduce our risk by preying on the small mammals responsible for transmitting Lyme disease to ticks," says Ostfeld. "We don't yet know whether predators like owls and hawks behave similarly."

5) How is climate change influencing the spread of tick-borne illnesses?

The northward and westward spread of blacklegged ticks and Lyme disease in recent decades is caused in part by climate warming, says Ostfeld. However, Lyme disease has also been spreading south, which is unlikely to be caused by climate change, scientists believe.

Models predict that Lyme disease will continue to move to higher latitudes and elevations over coming decades, a result of milder winters and longer growing seasons. "We're currently exploring how climate warming affects the seasonal timing of host-seeking and biting behavior of ticks," says Ostfeld.

6) Why are we more likely to contract Lyme disease in fragmented forests?

"When humans fragment forests, often through urbanization, we create conditions that favor the small mammals that amplify Lyme disease," Ostfeld says.

The species consistently found in forest sites, no matter how small or isolated, is the white-footed mouse. And lyme-infected ticks are often most abundant in the smallest forest patches, leading to a high risk of human exposure.

"To combat Lyme disease, one of the fastest growing threats to human health in the U.S., we need to know where it is, how it's transmitted, and how it can be controlled," says Scheiner.

"Long-term studies, such as work by Ostfeld and colleagues, show that the abundance of the disease-causing bacteria is determined by the number and variety of small mammals in a community. The research also demonstrates the value of conserving biodiversity as a way of limiting the spread of disease."

7) Aren't mice affected by ticks?

Long-term monitoring of mice and ticks in upstate New York shows that mice survive just as well when they're infested with hundreds of ticks as when they have few or no ticks. In fact, male mice survive longer when they have more ticks, Ostfeld says.

"This is bad news, as it means that heavy tick loads won't bring down mouse numbers, which would have helped reduce the human risk of tick-borne diseases."

8) Why are ecological studies essential to understanding emerging infectious diseases?

Tick-borne disease takes a huge toll on public health and on the economy, says Ostfeld. "Take the case of Lyme disease, where diagnosis and treatment remain controversial. One thing that everyone can agree on is the importance of preventing exposure. Doing this requires understanding the ecology of ticks, pathogens and hosts."

The more we know about where and when the risk is high, he says, the better we'll be able to protect ourselves and respond appropriately when we're exposed.

9) What precautions might be wise for people wishing to spend time outside?

"I'd recommend the use of tick repellents on skin or clothes, paying special attention to shoes and socks," Ostfeld says. "Tick nymphs seek hosts on or just above the ground, so shoes and socks are the first line of defense." Some studies show that daily tick checks during late spring and early summer can be protective.

Knowing the early symptoms of Lyme disease - fever, chills, muscle aches, often a large rash - is important. "People who live in the heaviest Lyme disease zones of the Northeast, Mid-Atlantic, and Upper Midwest," says Ostfeld, "and who start feeling flu-like symptoms, especially from May through July, should ask their doctors to consider Lyme disease."

10) Does this mean that we should stay inside so we don't risk becoming infected?

The likelihood of contracting Lyme disease is very low overall, says Scheiner, "and is even lower if you take reasonable precautions. Don't let the threat of Lyme disease keep you from enjoying the best part of spring and summer: the great outdoors."

-- Cheryl Dybas, NSF

Sunday, December 9, 2012

HUMAN ACTIVITY IS DRIVING SPREAD OF DISEASES


American robins play a key role in the spread of West Nile virus.  Credit:  NSF.

FROM: NATIONAL SCIENCE FOUNDATION

Emerging Vector-Borne Diseases Create New Public Health Challenge
Land-use change, globalization of trade and travel, and social upheaval drive emergence of diseases
Human activities are advancing the spread of vector-borne, zoonotic diseases such as West Nile virus, Lyme disease and dengue fever, report scientists publishing a series of papers today in the journal The Lancet.

Vector-borne zoonotic diseases result from disease-causing agents or pathogens that naturally infect wildlife, and are transmitted to humans by carriers such as mosquitoes and ticks. In short, they're diseases transmitted between animals and humans.

Widespread land-use change, globalization of trade and travel, and social upheaval are driving the emergence of zoonotic diseases around the world, said biologist Marm Kilpatrick, who studies the ecology of infectious diseases at the University of California, Santa Cruz.

Kilpatrick co-authored one of several papers in The Lancet, along with Sarah Randolph of the University of Oxford. The Lancet papers are part of a special series in the journal focused on emerging zoonotic diseases.

"Increasing human population, and the urbanization and agricultural intensification of landscapes, put strong selective pressure on vector-borne pathogens to infect humans--and to be transmitted by vectors and hosts that live around humans," Kilpatrick said.

"Humans are altering the environment and moving ourselves and other organisms around the globe at an ever-increasing pace," said Sam Scheiner, a program director for the Ecology and Evolution of Infectious Diseases (EEID) program at the National Science Foundation. "Our fast-track has led to a growing disease threat."

EEID is a joint effort with NSF and the National Institutes of Health. At NSF, the Directorate for Biological Sciences and Directorate for Geosciences fund the program.

EEID funded much of the research discussed in The Lancet papers. "These papers show how and why zoonotic diseases are emerging, and what we need to know to ease the disease burden," said Scheiner.

The papers "offer a bridge between ecologists and clinicians whose combined efforts are needed to address the ongoing challenges of emerging zoonotic diseases," said Kilpatrick.

Added scientist Peter Daszak, president of the EcoHealth Alliance in New York City and author of a paper in the series, "Pandemic zoonoses such as SARS, Ebola and HIV/AIDS are devastating when they emerge. What this series shows is that we have new ways of predicting their origins, of discovering them even before they reach our population--truly a brave new world for pandemic prevention."

There are roughly two types of emerging infectious diseases: introduced and locally emerging.

Introduced diseases arise from the spread of a pathogen to a new location, as when West Nile virus arrived in New York in 1999 and subsequently spread across North America.

Locally emerging diseases increase in importance in areas where they are endemic, as with Lyme disease in the United States during the past three decades.

These two types of emerging diseases can differ markedly with respect to infection dynamics or the number of cases over time, Kilpatrick said.

"Introduced diseases often cause a big spike in infections, and then decrease substantially. Locally emerging diseases often show a steady, sustained rise."

The movement of pathogens by global trade and travel results in the emergence of diseases in new regions.

Once established, introduced pathogens often evolve to take advantage of their new environments, including new hosts and vectors.

With much of the landscape shaped by human activities, pathogens may thrive by infecting hosts and vectors that do well in man-made environments.

Emergence of endemic vector-borne diseases can result from changes in land use, such as movement of people into new habitats, or environmental changes that affect wild animals that serve as natural hosts--and the insect vectors that spread the disease to humans.

Although vector-borne diseases are sensitive to climate, climate change does not appear to be a major driving force behind emerging diseases.

"So far, climate change has been a relatively minor player compared to land use and socioeconomic factors in the emergence of vector-borne disease," Kilpatrick said.

Social and economic changes, ranging from economic downturns to displacement of populations by armed conflict, frequently precipitate disease outbreaks through their effects on public health systems, sanitation systems, behavioral patterns and uses of natural environmental resources.

The incidence of any vector-borne disease involves a complex interplay of multiple factors affecting animal hosts, vectors and people.

Kilpatrick and Randolph emphasize that control of these diseases requires combined efforts by clinicians and public health officials to treat patients; promote behavior likely to minimize the risk of infection; and advise on efforts to reverse the ecological drivers of transmission through vector control, urban planning and ecological restoration.

The Lancet papers are published ahead of a special 20th anniversary symposium to be held on Dec. 11 and 12, 2012, in Washington, D.C.

The symposium is hosted by the National Academies' Institute of Medicine's Forum on Microbial Threats. The symposium will take a retrospective look at the Institute of Medicine's 1992 report on Emerging Infections and its 2003 report on Microbial Threats to Health, as well as its creation of the forum in 1996.


Search This Blog

Translate

White House.gov Press Office Feed